Buddha Institute							
Department: Mechanical Engineering							
Academic Semest	er: July – Dec 2022	2					
Semester: 3 rd	Section: A	Course Code: K	ME301	Course	: Thermodynamics		
Course Instructor	Contact H	Hours /week: 6(5+1) # of credits: 0-		# of credits: 04			
CIE Marks: 30 SEE Marks:70					Exam Hours	:: 03	

Prerequisites	s if any:						
Code No	Course Name	Description	Semester				
NOT APPLICABLE							

Content delivery:	Chalk & Board, DLP, System/Laptop with social media videos
-------------------	--

COURSE SYLLABUS:							
Module No	Contents of Module	Hrs	COs				

1	 Basic Concepts: System, Control Volume, Surrounding, Boundaries, Universe, Types of Systems, Macroscopic and Microscopic view points, Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Exact & Inexact Differentials, Cycle Reversibility Quasi – static Process, Irreversible Process, Causes of Irreversibility Energy and its forms, Work and heat (sign convention), Gas laws, Ideal gas, Real gas, Law of corresponding states, Property of mixture of gases, electrical, magnetic, gravitational, spring and shaft work. Zeroth law of thermodynamics: Concept of Temperature and its' measurement, Temperature scales. First law of thermodynamics: First Law for Flow Processes - Derivation of general energy equation for a control volume;Steady state steady flow processes including throttling; Examples of steady flow devices;Unsteady processes; examples of steady and unsteady I law applications for system andcontrol volume. Limitations of first law of thermodynamics, Condensers, Turbine, Throttling process, Steady flow energy equation, Boilers, Condensers, Turbine, Throttling process, Pumps etc. 	16	CO1
2	Second law of thermodynamics: Thermal reservoirs, Energy conversion, Heat engines, Efficiency, Reversed heat engine, Heat pump, Refrigerator, Coefficient of Performance, Kelvin Planck and Clausius statement of second law of thermodynamics, Equivalence of the two statements. Reversible and irreversible processes, Carnot cycle and Carnot engine, Carnot theorem and it's corollaries, Thermodynamic Temperature Scale, PMM-II. Entropy: Clausius inequality, Concept of Entropy, Entropy change of pure substance in different thermodynamic processes, Tds equation, Principle of entropy increase, T-S diagram, Statement of the third law of thermodynamics.	10	CO2
3	 Availability and Irreversibility: Available and unavailable energy, Availability and Irreversibility, Second law efficiency, Helmholtz & Gibb's function. Thermodynamic relations: Conditions for exact differentials. Maxwell relations, Clapeyron equation, Joule-Thompson coefficient and Inversion curve. Coefficient of volume expansion, Adiabatic and Isothermal compressibility. 	22	СО3

4	 Properties of steam and Rankine cycle: Pure substance, Property of Pure Substance (steam), Triple point, Critical point, Saturation states, Subcooled liquid state, Superheated vapour state, Phase transformation process of water, Graphical representation of pressure, volume and temperature, P-T, P-V and P-h diagrams, T-S and H-S diagrams, use of property diagram, Steam-Tables & Moller chart, Dryness factor and it's measurement, processes involving steam in closed and open systems. Simple Rankine cycle. Air-water vapour mixture and Psychrometry: Psychometric terms and their definitions, Psychometric chart, Different Psychometric processes and their representation on Psychometric chart. 	13	CO4
5	Refrigeration Cycles: Reversed Carnot Cycle for gas and vapour. Refrigeration capacity, unit of refrigeration. Air Refrigeration cycles; Reversed Brayton Cycle and Bell Coleman Cycle. Vapour compression refrigeration cycle; simple saturated cycle and actual vapour compression refrigeration cycle. Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle. Refrigerants; their classification and desirable properties. Vapour absorption refrigeration system.	10	C05

COURSE OUTCOMES: At the end of the Course, the Student will be able to:

KME301	
.1	After completing this course, the students will be able to apply energy balance to systems and control volumes, in situations involving heat and work interactions.
KME301. 2	Students can evaluate changes in thermodynamic properties of substances.
KME301. 3	The students will be able to evaluate the performance of energy conversion devices.
KME301. 4	The students will be able to differentiate between high grade and low-grade energies.
KME301. 5	Students can evaluate changes in thermodynamic properties of substances.

Mapping of CO v/s PO:

	P01	PO2	PO3	P04	P05	P06	PO7	P08	P09	PO10	P011	P012
KME301.1	2	1	-	-	-	2	-	-	-	-	-	-
KME301.2	-	1	3	-	-	-	-	-	-	-	-	-
KME301.3	-	-	-	2	-	-	-	-	-	-	-	-
KME301.4	1	2	-	-	-	2	-	-	-	-	-	-
KME301.5	-	2	-	-	-	-	-	-	-	_	-	-

Correlation levels: 1-Slight (Low)

2-Moderate (Medium)

3-Substantial (High)

Mapping of CO v/s PSO:

	PSO1	PSO2
KME301. 1	2	2
KME301. 2	2	2
KME301. 3	2	2
KME301. 4	2	2
KME301. 5	2	2

Gap in the syllabus	NIL

Topics to be covered	NIL
beyond syllabus	

Assessment Methodologies:

Sl. No.	Description	Туре
1	Student Assignment	Direct
2	Internal assessment	Direct
3	University exam	Direct
4	Student feedback	Indirect
5	Alumni feedback	Indirect
6	Employers feedback	Indirect

LESSON PLAN

Lecture #	Modul e#	Topics	RBT Level s	Course Outcom e Mappin g	Planned Date	Actua l Date	Facult y Sign	Remarks
1.		Introduction- Basic Concepts: System, ControlVolume			29/8/2022			
2.		Surrounding, Boundaries, Universe, Types of Systems,			30/8/2022			
3.		Macroscopic and Microscopicviewpoints,			31/8/2022			
4.		Concept of Continuum, Thermodynamic Equilibrium, State, Property, Process, Exact & Inexact Differentials,			01/9/2022			
5.	1	Cycle Reversibility Quasi – static Process, Irreversible Process, Causes of Irreversibility Energy and its forms	L3	C01	02/9/2022			
		Tutorial			3/9/2022			
6.		Work and heat (sign convention), Gas laws, Ideal gas, Real gas			5/9/2022			
7.		Law of corresponding states, Property of mixture of gases,			6/9/2022			

8.		electrical, magnetic, ,			7/9/2022	
		gravitational			8/9/2022	
9.						
10.		spring and shaft work.			9/9/2022	
		Tutorial			10/9/2022	
11.		Zeroth law of thermodynamics:Concept of Temperature and its' measurement, Temperature scales.			12/9/2022	
12.		First law of thermodynamics: First Law for Flow Processes - Derivation of general energy equation for a control volume			13/9/2022	
13.		Steady state steady flow processes including throttling;			13/9/2022	
14.		Examples of steady flow devices;Unsteady processes; examples of steady and unsteady I law applications for system andcontrol volume.			13/9/2022	
15.		Limitations of first law of thermodynamics, PMM-I.			13/9/2022	
		Tutorial			14/9/2022	
16.		Steady flow systems and their analysis, Steady flow energy equation,			15/9/2022	
17.	2	Boilers, Condensers, Turbine, Throttling process, Pumps etc, Throttling process, Pumps etc	L2	CO2	16/9/2022	
18.		Thermal reservoirs, Energy conversion,			17/9/2022	

					10/0/2022	
19.		Heat engines, Efficiency, Reversed heat engine			19/9/2022	
20.		Heat pump, Refrigerator, Coefficient of Performance,			20/9/2022	
21.		Tutorial			21/9/2022	
		Kelvin Planck and Clausius statement of second law of thermodynamics,			22/9/2022	
22.		Equivalence of the two statements. Reversible and irreversible processes,			22/9/2022	
23.		Carnot cycle and Carnot engine, Carnot theorem and it's corollaries,			23/9/2022	
24.		Thermodynamic Temperature Scale, PMM-II	L4	CO3	24/9/2022	
25.		Clausius inequality,			26/9/2022	
		Tutorial			27/9/2022	
26.		Concept of Entropy, Entropy change of pure substance in different thermodynamic processes,			28/9/2022	
27.		Tds equation, Principle of entropy increase,			29/9/2022	
28.	3	T-S diagram, Statement of the third law of thermodynamics			30/9/2022	
29.		Available and unavailable energy			1/10/2022	
30.		Availability and Irreversibility			3/10/2022	
		Tutorial			6/10/2022	
31.		Second law efficiency			7/10/2022	
32.		Helmholtz & Gibb's function.			8/10/2022	
<mark>33.</mark>		Conditions for exact differentials.			10/10/202 2	

	Maxwell relati	ons,		11/10/202	
34.				2	
35.	Clapeyron equ	ation,		12/10/202 2	
	Tutorial			13/10/202 2	
36.	Joule-Thompson and Inversion			14/10/202 2	
37.	Coefficient of expansion	volume		15/10/202 2	
38.	Adiabatic and compressibilit			17/10/202 2	
39.	Pure substance	e		18/10/202 2	
40.	Property of Pu (steam), Triple point			19/10/202 2	
	Tutorial			20/10/202 2	
41.	Saturation stat liquid state, Su vapour state			21/10/202 2	
42.	Phase transfor process of wat representation volume and te	er, Graphical of pressure,		22/10/202 2	
43.	P-T, P-V and P- T-S and H-S dia property diagr	agrams, use of	5 CC	27/10/202 2 94	
44.	Steam-Tables Dryness factor measurement			28/10/202 2	
45.	processes invo closed and op	lving steam in en systems.		29/10/202 2	
	Tutorial			31/10/202 2	
46.	Simple Rankin	e cycle.		1/11/2022	

				r –	0.444.0000	
		Psychometric terms and			2/11/2022	
		their definitions				
47.			-			
		Psychometric chart				
		Different Psychometric				
	5	processes and their				
48.	U				3/11/2022	
+0.		representation on			5/11/2022	
		Psychometric chart.				
		Reversed Carnot Cycle for			4/11/2022	
49.		gas and vapour				
50.		Tutorial	L6	CO5	7/11/2022	
501			_		0/11/2022	
		Refrigeration capacity,			8/11/2022	
		unit of refrigeration	1		14/11/202	
51.					2	
52.		Air Refrigeration cycles;			15/11/202	
521					2	
		Reversed Brayton Cycle and			16/11/202 2	
53.		Bell Coleman Cycle			2	
		Reversed Brayton Cycle and			17/11/202	
54.					2	
J 1 ,		Bell Coleman Cycle				
		Tutorial			18/11/202	
55.					2	
		Reversed Brayton Cycle and			19/11/202	
56.		Bell Coleman Cycle			2	
					21/11/202	
57.		Vapour compression			21/11/202 2	
57.		refrigeration cycle			_	
		Vapour compression			22/11/202	-
58.		refrigeration cycle			2	
		Vapour compression			23/11/202	
59.		refrigeration cycle			2	
					04/44/000	
		simple saturated cycle and			24/11/202 2	
60.		actual vapour compression			2	
		refrigeration cycle				
		Tutorial			25/11/202	
61.					23/11/202	
		simple saturated cycle and			26/11/202	
()		actual vapour compression			2	
62.		refrigeration cycle				
		0				

63.	Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle	18/11/202 2	
64.	Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle	01/12/202 2	
65.	Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle	02/12/202 2	
66.	Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle	03/12/202 2	
67.	Analysis of cycles, effect of superheating, sub-cooling and change in evaporator and condenser pressure on performance of vapour compression refrigeration cycle	10/12/202	
68.	Tutorial	12/12/202 2	
69.	Refrigerants;	13/12/202 2	
70.	their classification and desirable properties.	14/12/202 2	
71.	their classification and desirable properties.	15/12/202 2	

72.	Vapour absorption refrigeration system	19/12/202
73.	Vapour absorption refrigeration system	20/12/202 2
74.	REVISION	21/12/202 2

*L1 – Remembering; L2 – Understanding; L3 – Applying; L4 – Analysing; L5 – Evaluating; L6 - Creating Literature:

Books and References:

- 1. Basic and Applied Thermodynamics by PK Nag, MCGRAW HILL INDIA.
- 2. Thermodynamics for Engineers by Kroos& Potter, Cengage Learning.
- 3. Thermodynamics by Shavit and Gutfinger, CRC Press.
- 4. Thermodynamics- An Engineering Approach by Cengel, MCGRAW HILL INDIA.
- 5. Basic Engineering Thermodynamics, Joel, Pearson.
- 6. Fundamentals of Engineering Thermodynamics by Rathakrishnan, PHI.
- 7. Engineering Thermodynamics by Dhar, Elsevier.
- 8. Engineering Thermodynamics by Onkar Singh, New Age International.
- 9. Engineering Thermodynamics by CP Arora.
- **10. Engineering Thermodynamics by Rogers, Pearson.**
- **11.** Fundamentals of Engineering Thermodynamics by Moran, Shapiro, Boettner, & Bailey, John Wiley.
- 12. Engineering Thermodynamics by Mishra, Cengage Learning.
- 13. Refrigeration and Air Conditioning by C P Arora, MCGRAW HILL INDIA. Sample Questions:

Assessment rubrics that is going to be adopted for direct attainment is depicted in below table

Level of Achievement	Flaboration on Course Grading Description	
Excellent (A)	The Student's performance is outstanding in almost all the intended course learning outcomes	21 to 25
Good (B)	The student's performance is good in most of the intended course learning outcomes.	15 to 20
Marginal (C)	The student's performance is barely satisfactory. It marginally meets the intended course learning outcomes	12 to 14
Fail (F)	The Students performance is inadequate. Student fails to meet many of the intended course learning outcomes	Less than 12